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Abstract 

Amphibious vehicles, which transport cargo from ship to shore, will play a critical role in 
future Sea Base supply chain operations. During the summer of 2007, a project team of 
CISD interns developed a design concept called DUKW-21, a manned amphibious 
vehicle that had autonomous compatibility so that in the future, an autonomous control 
system could be implemented. 
 
To start the design of an autonomous control system for DUKW-21, this 2009 CISD 
intern project focused on autonomous amphibious path planning. While there have been 
developments in unmanned vehicle navigation, they have been focused on operations on 
land, sea or air with no integration of operational modes. Unmanned amphibious vehicles 
face a unique challenge in autonomously transitioning between sea and land, where there 
has been little research. 
 
This report investigates autonomous navigation by compiling ground and sea path 
optimization algorithms, a part of the overall amphibious navigation process. It then 
proposes an original, intuitive, algorithm for transitioning, which bridges the gap between 
sea and land path planning. Several functional requirements are outlined for the DUKW-
21 project that are needed for implementation of the proposed algorithms.
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Introduction 
The United States military currently relies heavily on large transport vessels, such as 
Large Medium-Speed RoRo (LMSR) ships, and developed deep water port facilities to 
deliver logistic materiel abroad. The difficulties in finding and securing port facilities in 
hostile areas spurred the development of the Sea Base concept; the provision of mobile 
port facilities in controlled waters. The key challenge to the concept is the development 
of a supply chain to transport cargo from the Sea Base to shore. One approach is to use a 
medium size container ship to transport cargo from the Sea Base to a location close to 
shore, at which point amphibious vehicles can run continuous delivery missions. 
 
During the summer of 2007, a project team of CISD interns developed a design concept 
called DUKW-21, an amphibious vehicle that would enhance sea to shore logistics 
(Gonzalez et al., see Error! Reference source not found.). The design’s simplicity 
allows it to drive over, pick up, and carry a 20ft ISO container between its SWATH-like 
hulls from a cargo ship five nautical miles offshore to a point five nautical miles inland. 
 
As a continuation of the concept design, a number of prototype models have been 
produced, the latest of which is a 1:7 scale remote-control model called DUKW-ling 
(Critchell, see Error! Reference source not found.). Its purpose is to demonstrate the 
navigational capabilities of the original DUKW-21 concept, primarily its ability to 
operate both in and out of water, and transition between water and land. 

 

 

Figure 1: CAD Rendering of DUKW-21 Concept 

 

Figure 2: DUKW-ling Demonstrator 

 

DUKW-21 Automation 

One of the initial requirements of the DUKW-21 concept was to be “controlled by either 
a single crew member or by automatic, unmanned control,” allowing a fleet of DUKWs 
to continuously facilitate the ship-to-shore logistics train with limited human interaction. 
Replacing the human driver with an intelligent computer would remove the risk of 
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casualty, and it would allow the vehicle to make decisions in real-time, even if 
communication was temporarily interrupted. 
 
The purpose of this project is to investigate possible autonomous control philosophies 
and propose an autonomous navigation algorithm that could be used to travel from a 
point offshore to a point inland and back. A number of assumptions have been made 
regarding the type of information DUKW-21 will need in order to execute its mission, 
and they are outlined in the conclusion of this report.  

Overview of Autonomous Navigation 
Autonomy is the capacity of a system to make informed, un-coerced decisions about its 
actions without the involvement of another system or operator. In recent years it has been 
adopted by the fields of robotics and manufacturing to describe systems or products 
which perform complex, potentially hazardous, repetitive or mundane activities with only 
minor human supervision or instruction. 
 
Autonomous vehicles (AV), be they (sea) surface, ground or air based, generally consist 
of the same four core components, as illustrated in Figure 33:  

 A perception interface, which consists of sensors that acquire information about 
the system’s environment, as well as software that converts low-level input 
signals from the sensors into high-level information. 

 A planner, which, based on the information acquired by the perception interface, 
as well as knowledge about the system’s present state, produces the best high-
level plan for the system to complete its mission. 

 An executive, which upon reading a new plan, calculates what the actuators need 
to do for the system to run the plan, and outputs high-level commands to the 
actuator interface. 

 An actuator interface, which consists of moveable components, as well as 
software that converts high-level commands into low-level signals that control the 
motion of the actuators. 

2 
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Figure 3: Autonomous Control Architecture 

An AV planner would derive plans that include vehicle navigation, as well as other 
movements (such as picking up and transferring an ISO container, in the case of DUKW-
21). The process of producing a navigation plan is called path planning. The scope of this 
project is limited to path planning for an Autonomous Amphibious Vehicle (AuAV). 

Path Planning Philosophies 

Amphibious vessels are unique in that they operate in three distinct zones; on the surface 
of water, on land and (at various stages) in both at the same time. Current developments 
in vehicle autonomy have focused on operations on land, sea or air with no combinations. 
Although an amphibious vessel could take advantage of these ideas, discreet philosophies 
have been developed in each area to take advantage of their individually unique 
problems. 
 
Autonomous Ground Vehicles (AGV) typically implement a batch path planning 
system, which finds a complete path from the present location to the goal waypoint (Pell 
et al.). A path is said to be complete if the vehicle can successfully arrive at the goal 
destination by following the path (assuming the environment does not change). Batch 
planners work well with AGVs because ground environments are mostly static (for 
example, terrain elevations do not change by the minute), and if there are only minor 
changes, the path does not need to be re-planned from scratch because most of it remains 
unaffected (Ferguson et al.). 
 
Autonomous Sea Surface Vehicles (ASSV) do not typically implement batch path 
algorithms because the sea environment is very dynamic; the path would often need to be 
completely re-calculated, resulting in extensive computation time. Instead, ASSVs 
usually implement a continuous path planner, which finds an optimal path to a horizon 
point, well short of the goal waypoint. This plan is continuously updated with 
modifications as the vehicle moves (Huntsberger et al., Chien et al., Larson et al.). 

3 



Naval Surface Warfare Center Carderock Division 
Naval Research Enterprise Intern Program 

DUKW-21 Autonomous Navigation 

Autonomous Amphibious Vehicles (AuAV) also face a particularly difficult challenge: 
the transition. That is, traveling through both environments while moving from sea to 
land, and vice versa. This transition requires the vehicle to traverse the surf zone, which 
is even more dynamic than open water, negating the use of a batch path planner.  
Similarly, a continuous path planner which does not consider the entire environment 
would also fail, for the same reason it is unsuitable for ground navigation: it only plans 
for the short term, potentially allowing the AV to get stuck in a dead end. See Figure 4 
for an illustration of this problem. Figure 4 illustrates the problem when using a 
continuous planner for ground navigation; a terrain map is given where each cell has an 
associated cost, or traversibility difficulty. The AGV seeks to find a path to its goal cell 
by only considering a limited horizon. The pink arrow represents a path that the AGV 
would take if it does not consider the entire course; a dead end. 
 

 
Figure 4: Flaw of Continuous Process Implementation on AGV 

 
 
 
 
 
 
 

Graph Model Concepts 

Before any detailed discussion on path theory can begin in earnest, it is important to 
outline the standard notation used to explain concepts in this largely mathematical field. 
The following pages define a number of terms, and establish the notation that will be 
used throughout this paper. 
 

Terminology 

A graph G is defined to be a set of nodes, denoted by S, and a set of directional edges, 
denoted by . If ij is an element of , it is said that there is an edge from node si  S to 
node sj  S, sj is a successor of si, and si is a predecessor of sj. Note: the existence of ij 
does not imply the existence of ji. The graphs of concern for this application are those 
whose edges have costs associated with them. The cost of edge ij is denoted by c(si, sj). 
Note: the existence of ij and ji does not imply that c(si, sj) =c(sj, si). In this report, the 
only graphs of concern are those where for every pair of nodes sp and sq that are elements 
of S, if the edge pq exists, the cost of pq is greater than zero. That is,  si,sj  S, ij ≠  
 c(si, sj) > 0.  

4 
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Define the successor multi-valued function  on S, whose value for each s is the set of 
successors S’  S of s. That is, s) = S’ :  s’  S’, s,s’ ≠   s’’  {x  S : x  S’}, 
s,s’’ = . Let the inverse of   when applied to s,yield the set of predecessors of s. 
When or   is applied to a node s, it is said that s is expanded.  
A path p(s1, sn) from s1 to sn is an ordered set of nodes {s1,s2,…,si,si+1,…,sn} with each 
si+1 a successor of si. The cost of a path is the sum of the cost of the edges in the path. 
That is, c(p(s1, sn)) = c(s1,s2) +  c(s2,s3) + …+ c(si,si+1) + … + c(sn-1,sn). If a path from 
si to sj exists, sj is said to be accessible from si. The problem of finding an optimal path 
from a starting node sstart to a goal node sgoal can be stated as such: 
If sgoal is accessible from sstart, find the cheapest path p(sstart, sgoal). That is, given 
sstart,sgoal  S, find argmin(c(p(sstart, sgoal))). 

Finding an Optimal Path 

A classical approach to finding the optimal path in a graph is to use Dijkstra’s algorithm 
(Algorithm ). Define the path cost function g : S  + to yield the cost of the cheapest 
path from the start node s  to the present node. That is, g(s) = min{c(p(s , s))}. g(s) 
is also referred to as the g-value. Dijkstra’s algorithm initializes g-values for every node, 
and then improves them with each iteration. To access the optimal path after the process 
is complete, use . 

start start

Algorithm 2
 

Algorithm 1: Dijkstra's Algorithm 

Step 1 Assign the start node a g-value of zero and every other node a g-value of 
infinity. 

Step 2 Mark all nodes unvisited and set the initial node to the current node, s. 
Step 3 Expand s and update the g-values for every successor node s’ that is unvisited. 

That is, g(s’) = g(s) + c(s, s’). 
Step 4 Mark s visited and set the unvisited node in the graph with the smallest g-value 

as the current node s. 
Step 5 Repeat steps 3 and 4 until s = sgoal. 
 

Algorithm 2: Constructing Optimal Path 

Step 1 Set the current node s’ to sgoal. 
Step 2 Expand s’. 
Step 3 Connect s’ to the predecessor node s with the smallest g-value, and set s’ to s. 
Step 4 Repeat steps 2 and 3 until s’ = sstart. 
 
Dijkstra’s algorithm always yields the optimal path from a start node to a goal node. 
However, it is inefficient because many nodes are expanded, which makes for long 
computation time. Consider a situation where information is known about the problem’s 
environment such that even without expanding a node s, an approximate cost can be 
determined for the optimal path from s to sgoal. This approximate cost is called the 
heuristic, or h-value. The sum of the g-value and h-value is called the f-value. That is, f(s) 
= g(s) + h(s). The f-value of a node can be thought of as the lower bound of the cost of 
the path from sstart to sgoal that goes through s. Then, instead of visiting every node, the 
only nodes that would need to be visited are ones that have the smallest f-value. 
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To illustrate an example where using a heuristic would greatly reduce the number of 
nodes expanded in a path search, consider the problem of finding the fastest road route 
from an initial city sstart to goal city sgoal. Using a graph to model the problem would be 
appropriate, where edges represent streets and nodes represent intersections. The cost of 
each edge would be the travel time of traversing it. Because it is impossible for a road to 
be shorter than the perfectly straight line connecting a node s to sgoal, an appropriate h-
value would be the travel time of the straight-line path from a node s to sgoal, which is the 
lower bound of the travel time between the two points. To see how this heuristic would 
be useful, consider the following case: 
 
Suppose the current node s is the start node sstart, and is expanded, and there are two 
successors, s1 and s2, where g(s1) < g(s2). Using Dijkstra’s algorithm’s would always be 
set to s1. Suppose that sgoal is directly north of sstart, there is a straight road connecting 
them, s2 is an intersection on that road, and s1 is an intersection that is exactly east of 
sstart, but is closer than s2 (see Figure 5).  
 
 

 
Figure 5: Case where g(s1) < g(s2) but s2 is a 

Node on the Optimal Path. 

 

 
Figure 6: Case Where Change in Environment 
Does Not Drastically Affect the Optimal Path 

 
  
 
Assuming the road conditions are homogenous (traffic, speed limit, etc. is the same 
everywhere), it can be seen that without taking the h-value into account, the non-optimal 
node, s1 would be expanded next, but if f-values of unvisited nodes were compared 
instead of g-values, s would be changed from sstart to s2, which would be the optimal 
choice, and would thereby not waste time on an unnecessary node expansion. Algorithm 
3 is a heuristic extension of Dijkstra’s algorithm known as A*. 
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Algorithm 3: A* 

Step 1 Assign the start node an f-value of h(s )start  and every other node an f-value of 
infinity. 

Step 2 Mark all nodes unvisited and set the initial node to the current node, s. 
Step 3 Expand s and update the f-values for every successor node s’ that is unvisited. 

That is, f(s’) = g(s) + c(s, s’) + h(s’). 
Step 4 Mark s visited and set the unvisited node in the graph with the smallest f-value 

as the current node s. 
Step 5 Repeat steps 3 and 4 until s = sgoal. 
 
In cases where the environment is not static, the optimal path needs to constantly be 
modified. When most of the changes do not drastically affect the entire optimal path, the 
path does not necessarily have to be reconstructed from scratch. For example, consider 
the case in Figure 6 where initially, the optimal path from sstart to sgoal takes the road 
modeled by the edge from s4 to sgoal. Suppose, however, that while the vehicle is still 
very far from sgoal, there is an accident on the said road. To update the optimal path, a 
simple detour would need to be made and instead of traveling straight to sgoal from s4, the 
optimal path would travel from s4 to s5, and then to sgoal. But, the optimal path from sstart 
to s4 would remain the same. 
 
While an AV navigates, the most drastic changes in the environment are typically close 
to it. This is because the global map that is provided via some agent has error, and the 
perception of the local environment picked up by sensors on the AV give a much better 
picture of the local environment. Therefore, path-replanning algorithms typically find an 
optimal path starting from the goal and work towards the present location, so that local 
changes do not affect most of the optimal path. In this case, the g-value refers to the cost 
of the optimal path from a node s to sgoal and the h-value refers to the Euclidean distance 
from sstart to s. Using A* to find an initial optimal path but starting with sgoal and working 
towards sstart is called Backwards A*. 
 
One dynamic re-planning extension of A* is called D* Lite, which introduces additional 
terminology. When the cost of an edge changes, the g-value of the successor usually 
changes, and the node whose g-value changes is said to be inconsistent. If c(s, s’) changes 
and g(s’) decreases, s’ is said to be over-consistent. On the other hand, if c(s, s’) changes, 
g(s’) increases and s’ is said to be under-consistent. Algorithm 4 shows a high level 
description of D* Lite (note: this is a version not optimized for computation time; for an 
optimized version see Koenig & Likhachev). To access the optimal path after D* Lite is 
complete, use Algorithm 2 but instead of starting at sgoal, start at sstart and work towards 
sgoal. 
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Algorithm 4: D* Lite 

Step 1 Use Backwards A* to find an optimal path from sgoal  to sstart. 
Step 2 Update the g-value for every node s’ where c(s, s’) changed for a predecessor 

node s by considering each predecessor node p (going towards sgoal from s’) and 
finding the one that minimizes g(p) + c(p, s’), which equals the new g(s’) (note: 
p might equal s). 

Step 3 While the inconsistent node s with the smallest f-value is less than the f-value of 
sstart: 

 If s is under-consistent, repeat Step 2 for every predecessor of s 
(towards sstart). 

 If s is over-consistent, repeat Step 2 for s and every predecessor of s. 

 
It should be noted that D* Lite does not necessarily derive an optimal path faster than A*. 
This is because A* expands each node at most, once, while D* Lite can expand a node 
twice: once as an under-consistent state and once as an over-consistent state. Thus, D* 
Lite should only be used if the environment is mostly static, and only minor changes need 
to be made to correct the optimal path. 
 

Approach to Amphibious Navigation 

 
The only way to develop, or identify a potential process for amphibious navigation is to 
separate the problem field into its three components; sea, land and transition. By 
investigating what options exist in planning paths in each, while considering the 
requirements of interactivity, it may be possible to identify a hybrid algorithm, or set of 
algorithms which can be used to provide full amphibious autonomy. 
To this end, the problem is considered as separate tasks; having the start and end points 
both at sea, both on land, and only then starting at sea and terminating on land (and vice 
versa). 

8 
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Sea Surface Navigation 
An AuAV, like an ASSV, will be put through extensive trials to identify its operational 
capacity – generally conducted on prototypes before the final design is built. The analysis 
of this prototype data should be used to derive an estimated direction dependent speed 
function that takes information from the vehicle’s sensor suite (such as roll angle, wind 
velocity, and its own velocity) as inputs. 
 
The direction dependent speed function V( : [0, 2]  + denotes the maximum 
attainable speed for a given heading angle Let Pxy be defined as the set of all 
continuous and rectifiable paths from the start point x to a target point y. Define the path 
traversal time function t :  P  +, where  p P , t(p)  denotes the travel time required 
to traverse the path p. The problem can now formally be defined:  

xy

For a given speed function V( : [0, 2]  +, a starting point x  2, and a goal point 
y  2, find a fastest path from x to y that lies in 2. That is, find p’ Pxy : t(p’) ≤ t(p)  
p  Pxy. 
 
An AuAV must operate in shallow water and the surf zone, where predicting the 
dynamics requires very sophisticated modeling techniques (Madsen et al.). Since 
autonomous sea surface navigation requires continuous re-planning, as opposed to batch 
planning, as discussed earlier, incorporating the models into a navigation algorithm 
would be infeasible. To develop an intuitive, computationally feasible algorithm, the 
problem can be simplified by treating the sea state in the ocean as time and space 
homogeneous every time a direction dependent speed function is calculated. In other 
words, whenever V(is calculated at the vehicles present location, it is assumed that 
every point in the sea area of operation has the same direction-dependent speed function. 
 
The homogenous simplification allows for the consideration of a Unit Linear Path 
Attainable Region (ULPAR), or the set of all points that can be reached in a unit time 
period from a starting point while following a straight line path. That is,  x  2, an 
ULPAR L(x) := {y  2 :  || y – x || ≤ V( )}, where  and || y – x || denote the angle 
and length of a vector y – x, respectively. In the case where the ULPAR is convex, the 
optimal path in P is merely the straight line connecting points x and y. However, in most 
cases, the ULPAR will not be convex, so a theorem developed by Dolinskaya & Smith 
(2008a) is applied (see ). Some additional terminology is required: 

y-x y-x

xy 

Theorem 1
 
Define bd(L(x)) to be the border of L(x) and conv(L(x)) to be the convex hull of L(x). For 
the problem of finding the fastest path from x to y, let k be the point of intersection of the 
line lxy connecting points x and y, and the border of the ULPAR L(x), i.e., k := lxy ∩ 
bd(L(x)). Similarly, k’ :=  lxy ∩ bd(conv(L(x))). See Figure 7 and Figure 8 for a diagram 
illustrating these definitions. 
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Figure 7: ULPAR Definitions Illustration 

 

 
Figure 8: Case 1, k = k’ 

 

 

Theorem 1: Optimal Path between Two Points for Non-Convex ULPAR (Dolinskaya & Smith, 
2008a) 

If k = k’ , the fastest path from x to y is the straight line segment connecting them (see Figure 8). 
 
If k ≠ k’ , the fastest path from x to y consists of two line segments: the straight line segment from 
point x to point z = x + (x1 – x) and the second line segment from point z to point y, where 

 and x1, x2  L(x) s.t.    [0,1] : k’ = x1 + (1 - )x2 (see Figure 9, and note that (y 
– z)||(x2 – x)). 
 
 

 
Figure 9: Case 2, k ≠ k’ 

 

 
Figure 10: Example of Case with No Feasible Path 
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The fastest path theorem stated above assumes that a feasible path from x to y exists. In 
some situations, the sea state might be such that no feasible path exists with the 
corresponding ULPAR (see Figure 10). In the event that DUKW-ling has no feasible path 
from its present location to its goal, it must go backwards until a feasible path exists. The 
planner’s first step will always be to see if a feasible path exists by using the approach 
laid out in the following: 
 
If the domain of V() is extended to [-, 3], lower and upper heading angle bounds can 
be defined. If V(y-x) = 0, define the lower heading angle bound L to be the greatest 
angle going clockwise on V starting at y-x where the maximum attainable speed at every 
angle between this and y-x is zero. That is, L := inf{V() = 0,   [y-x]}. 
Similarly, the upper heading angle bound U := sup{V() = 0,      [y-x, ]}. 
See Figure 11 for an illustration of the definitions. To determine if a feasible path exists 
from x to y, Theorem 2 is used.  
 

Theorem 2: Path Feasibility (Dolinskaya & Smith, 2008a) 

A feasible path from x to y does not exit if and only if V(y-x) = 0 and ||U|| + ||L||   ≥ . 
 
 

 

 
 

 
Figure 11: Illustration of Defined Heading Bounds 

Now consider the problem of finding the fastest path from point s to point t in a plane 
with polygonal domain, 2 \ , where  is the set of obstacles, and L(s) is convex. Let 

(i,j) be the travel time from point i to point j for a direction dependent speed function 
V.  finds an obstacle avoiding fastest path when the ULPAR is convex 
(modified from Dolinskaya & Smith, 2008b).  Backwards A* was chosen as the 
algorithm for finding the optimal path in the visibility graph instead of D* Lite because 

 
V

Algorithm 5
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the cost of almost every edge in the graph will change as V changes, which would make 
D* Lite slower due to the double node expansion mentioned earlier. 
 

Algorithm 5: Obstacle-Avoiding Fastest Path for Convex ULPAR 

Step 1 Construct a visibility graph G as follows (see Figure 12 for an example):  
 The set of nodes, S, is composed of all the vertices of the obstacles in , 

as well as start point s and target t.  

 The setof edges,  consists of all the straight-line edges 
interconnecting these vertices such that they do not intersect any of the 
obstacles in .  

 For an edge with parent node i and successor node j, let the cost of the 
edge, c(i,j) = V(i,j).  

Step 2 Apply Backwards A* Algorithm to find an optimal path in G from node s to 
node t. For the h-value, use the travel time of traveling the Euclidean distance 
from s to the present location (this the lower bound of the fastest route). The 
resulting path is an obstacle-avoiding fastest path. See Figure 13 for an example 
of an obstacle avoiding fastest path for the visibility graph in Figure 12. 

 

 

 

 
Figure 12: Construction of a Visibility Graph (Dolinskaya & Smith, 2008b) 
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Figure 13: Optimal Path for Visibility Graph in Figure 12 when L(s) is Convex (Dolinskaya & Smith, 

2008b) 

To extend this approach to the case when L(s) is not convex, apply Algorithm 5 using the 
convex hull of V, denoted as V ’. Then use Theorem 1 to find an optimal path from the 
start point to the end point of each edge in the path obtained from Algorithm 5. Denote 
this transformation with the function  :   x, where (xy) =  {xz, zy}, where 
V‘(x, y) = V(x, z) + V(z, y) (for a proof, see Dolinskaya & Smith, 2008a).  
 
However, consider the case where the optimal path corresponding to an edge is blocked 
by an obstacle. To deal with this problem, divide the edge into subsections such that the 
optimal path corresponding to each subsection is not blocked by an obstacle. That is,  
xy  , (xy) ∩  ≠    n   s.t. V‘(x, p1) + V‘(p1, p2) + … + V‘(pn, y) = V‘(x, 
y)  (x,p1) ∩  = . The optimal path is then the sum of these zigzag paths. See 
Figure 14 for an illustration of such a path. 

 
Figure 14: Optimal Path from x to y (Dolinskaya & Smith, 2008b) 
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Using the mentioned theorems and processes, Dolinskaya & Smith derive an algorithm 
which finds an optimal path from s to t such as in Figure 15. But, since the optimal path 
still intersects the nodes of the path yielded by Algorithm 5, to save computing time, it 
will only be of interest to derive the optimal path from the present location to the nearest 
node in the path from Algorithm 5. If the travel time of the path to the first node is less 
than the time it takes the computer to find a new path, the path should be calculated 
through the second node. Now Algorithm  is introduced, which finds the heading for the 
optimal path from a start point in water to a goal point in water.  
 
 

Algorithm 6: Heading for Optimal Path 

Step 1 Find V’(for   [0, 2] such that LV’ = conv(LV). 
Step 2 Use Algorithm 5 to find an optimal path pV’ corresponding to V’ . 
Step 3 Let {k0, k1, k2, …, kn} be an ordered set of vertices pV’ traverses where k0 = s 

and kn = t. For the pair k0, k1, find (k0,k1). If (k0,k1) ∩  ≠ , divide k0,k1 
into m subsections such that V‘(k0, p1) + V‘(p1, p2) + … + V‘(pm,  k1) = V‘(k0, 
k1) and (k0,p1) ∩  = . Use this approach to find the zigzag optimal path and 
make this the new (k0,k1). 

Step 4 Navigate along (k0,k1). If the optimal V(k0, k1) is less than the time it takes to 
plan a new path, repeat step 3 to find (k1,k2) and add that path to (k0,k1). 

Step 5 In parallel, process the following, and navigate on the path that is derived first:  
 Repeat Steps 3-4 to find (k0,k1) and/or (k0,k2).  

 If Step 2 is not being processed, start processing Step 2. 

 

 
Figure 15: Optimal Path for Visibility Graph in Figure 12 when L(s) is Non-Convex (Dolinskaya & 

Smith, 2008b) 
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ased representation of a map 
ontaining information about the terrain, as well as enemy locations. Each cell in the grid 

the paths produced are restricted to headings of /4 increments. See Figure 16 and Figure 
17 for an illustration of this problem reproduced from Ferguson & Stentz, 2005. In Figure 
17, shaded cells indicate obstacles, the black line is the angle-limited path, and the dashed 
blue line is the optimal path. 

 

Ground Navigation 
An AuAV, like typical military AGVs, will have a grid-b
c
will have an associated cost corresponding to its traversibility difficulty (recall Figure 4). 
For ground navigation, the task is to plan the path of least net cost from the AV’s present 
location in the grid to a desired goal location in the grid. 
 
A common method of approximating the grid is with a graph, where nodes represent grid 
cell centers and edges connect nodes corresponding to adjacent grid cells. This simplifies 
the problem of path planning to finding the optimal path of a graph which was discussed 
earlier (see Ferguson et al. for a survey). A significant limitation of this approach is that 

 
Fig
Re

ure 16: A Grid in which Nodes 
side at the Center of each Cell 
(Ferguson & Stentz, 2005) 

Figure 17: Comparison of Paths (Ferguson & Stentz, 2005)

 
A state-of-the-art path planner and re-planner, Field D* (Ferguson & Stentz, 2005) is 
introduced in the follo

 

wing discussion, which assigns nodes to represent cell corners 
instead of its center (see Figure 18). Field D* has been successfully implemented on 
many AGVs, including Mars Exploration Rovers (Carsten et al.), and it is the algorithm 
that an AuAV should use for ground navigation. Additional terminology is required to 
understand Field D*. 
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Figure 18: A Grid in which Nodes Reside at Cell Corners (Ferguson & Stentz, 2005) 

 

Terminology 

A cell  is an integer point that contains a positive traversal cost c, and a set of four 
corner nodes, denoted by Sc. That is,  := { 2, +, {Sc}}. A set of cells will be referred 
to as a grid. To formally state the problem of finding an optimal ground path: 
Given a grid and two nodes sstart and sgoal in the grid, find the path within the grid from 
sstart to sgoal with minimum cost. 
 
Define the node neighbor pair finding function  : S   {(S, S)} that would return a set of 
node neighbor pairs (NNP). For example, in Figure 18, (s) would return the set 
{(s1,s2),(s2,s3),…,(s7,s8),(s8,s1)}, where each (si, sj) is a NNP. 

Calculating Path Cost 

With algorithms where nodes correspond to grid cell centers, the cost of traveling from 
one node to the successor node in a neighboring cell is the cell cost corresponding to the 
successor node. This allows for the straightforward g-value from D*Lite and Backwards 
A*: g(s) = min{c(s, s’) + g(s’)  s’  (s)}. 
 
With Field D*, calculating the traversal cost from one node to another is less intuitive 
which makes finding g-value more difficult. Field D* uses linear interpolation to arrive at 
the following path cost function for g(sy), where sy is a point on the cell edge with 
endpoints s1 and s2 (see Figure 19): g(sy) = yg(s2) + (1 – y)g(s1), where y is the distance 
from s1 to sy, assuming unit cells. To reiterate, g(si) is the cost of the cheapest path from 
si to sgoal. Staying with the example in Figure 19, to find g(s), the cost of traveling from s 
to sy must be added to g(sy). 
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Figure 19: Illustration of Path Cost Function 
Figure 20: Optimal Path from s to sy if < 0 

 
The problem of finding the cost of traveling from s to sy is generalized to determining the 
cheapest cost for a path from s to any point on the line segment l1,2 connecting the points 
at s1 and s2. The path cost is a function of two cell weights, as well as the distance in the 
x and y direction. Consider the example path in Figure 19. The path cost 

22
2,1 )1(),( yxabxlsc  , where a and b are weights of their corresponding cells.  

 
It has been shown that there are only three possible optimal path forms from s to sy (see 
Figure 20, Figure 21, Figure 22) (Ferguson & Stentz, 2005). Let  be the difference in 
node g-values. That is, s1,s2)= g(s1) – g(s2). Algorithm  is the process of calculating the 
path cost for a node s going through a line segment l1,2. Calculating the path cost requires 
three node parameters. c(s, s1, s2) yields the cost of the path from s to the cheapest point 
on l1,2 where s2 is diagonal to s, a is the traversal cost of the cell with corners s, s1, s2, 
and b is the traversal cost of the cell with corners s, s1, but not s2. 
 

Algorithm 6: Calculating c(s, s1, s2) 

Step 1 Check if a and b are both infinity. a b = ∞  g(s) = ∞. 
Step 2 Find = g(s1) – g(s2). Depending on the value of , g(s) will have one of the 

following values: 
 If < 0, then the optimal path from s through l1,2 travels straight 

through s1 (Figure 20), and has a path cost g(s) = min(a, b) + g(s1). 

 If 0 <  ≤ b, then the optimal path travels straight through a point on 
l1,2 not s1 or s2 (Figure 21), and has a path cost 

)()1(1)( 2
2 sgyysg   , where 










 1,min

22 



a
y . 

 If 0 <  ≤ b, then the optimal path travels some of the bottom edge and 
then straight through s2 (Figure 22), and has a path cost 
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Figure 21: Optimal Path from s to sy if  <   ≤ b 

 

Figure 22: Optimal Path from s to sy if b <  

 

Deriving the Path 

Field D* works similarly to D* Lite, but since it is not a graph path planner, there are 
some differences. First, in deriving the initial path, Backwards A* cannot be used so it is 
extended to work in the cell node model used by Field D* (see Algorithm 7). Second, the 
heuristic must be modified to take into account that a point on a path can be changed to 
any point along that cell side. Thus, the h-value of a node s is the minimum Euclidean 
distance from sstart to any point on the side of the cell containing s. To trace the optimal 
path, use Algorithm , which is an extended version of backwards Algorithm 2 to the grid 
problem domain. Algorithm  is a high level description of Field D* (note: this is an un-
optimized version; for an optimized version see Ferguson & Stentz, 2005). 

 

Algorithm 7: Backwards A* Extended to Grid Problem Domain 

Step 1 Assign the goal node an f-value of h(s )goal  and every other node an f-value of 
infinity. 

Step 2 Mark all nodes unvisited and set the initial node to the current node, s. 
Step 3 Expand s and update the f-values for every successor node s’ that is unvisited. 

That is, f(s’) = g(s) + c(s, s’,s’’) + h(s’) (use Algorithm  to find c(s, s’,s’’)). 
Step 4 Mark s visited and set the unvisited node in the graph with the smallest f-value 

as the current node s. 
Step 5 Repeat steps 3 and 4 until s = sgoal. 
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Algorithm 8: Constructing Optimal Path in a Grid 

Step 1 Set the current node s to sstart. 
Step 2 Expand s. 
Step 3 Connect s to the point which minimizes g(s) + c(s,s’,s’’) for all NNP (s’,s’’). Set 

s to s’. 
Step 4 Repeat steps 2 and 3 until s = sstart. 
 

Algorithm 9: Field D* 

Step 1 Use Backwards A* to find an optimal path from sgoal  to sstart. 
Step 2 Update the g-value for every node s’ where c(s, s’,s’’) changed for a node s by 

considering each node p (going towards sgoal from s’) and finding the one that 
minimizes g(p) + c(p, s’,s’’), which equals the new g(s’) (note: p might equal s). 

Step 3 While the inconsistent node s with the smallest f-value is less than the f-value of 
sstart: 

 If s is under-consistent, repeat Step 2 for every s’ (towards sstart). 

 If s is over-consistent, repeat Step 2 for s and every s’. 

Transition 
While the ground-to-ground path planning algorithm is a standard AGV algorithm, and 
the sea-to-sea algorithm is derived from sea path optimization theorems, there has been 
little to no research on planning paths for the transition from sea to ground and vice 
versa. 
 
The major challenge in transitioning is identifying the best beaching point. Recall that 
finding an optimal sea path requires finding a simplified path from the present location to 
a target point. Consider the case illustrated in Figure 23, where the AuAV must decide 
which point on shore to beach. The left path at first may appear to be optimal because it 
is in the heading angle of least resistance (as can be seen in the ULPAR), and the 
beaching point has the lowest traversibility cost. However, the path would require the 
vehicle to travel a considerable distance in navigating around the wall of obstacles once it 
has beached. If it took the path on the right, it would incur a greater cost at first, but 
would have an optimal path to travel to the final target from the beaching point. The 
proposed algorithm solves this problem differently for each type of transition (sea-to-
ground and ground-to-sea). 
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Figure 23: Illustration of Difficulty in Identifying Beaching Point 

Sea-Surface to Ground 

The first approach considered for sea-surface to ground navigation is to find an optimal 
path that considers both sea and land conditions. Since the optimal sea path is based on a 
visibility graph with weighted edges, an intuitive way of incorporating information from 
the ground is to integrate it with a ground path planner that uses a graph model of the 
grid, such as D* Lite. Algorithm  is a possible algorithm that integrates the two graph 
models. 
 

Algorithm 10: Optimized Sea-Surface to Ground Path Plan 

Step 1 Construct a graph representation of the grid model of the ground using cell 
centers as nodes and traversibility cost as edge cost. 

Step 2 Use Algorithm 5 to determine the optimal travel time from the vehicle’s present 
location to each node on the shore. Construct an edge from the vehicle’s 
location to each node on the shore where the edge cost is a function of the 
optimal travel time to that node. 

Step 3 Use D* Lite (Algorithm 4) to find the optimal path from the present location to 
the goal point on ground. 

Step 4 Use Algorithm  to find the heading of the optimal path from the present location 
to the point on shore that is on the optimal path found in Step 3. 

Step 5 While the vehicle is in the water and surf zone, repeat steps 2-4. 
Step 6 When the vehicle is firmly on ground, use Field D* (Algorithm ) to find the 

optimal path to the goal. 
 
Algorithm  would come close to finding an optimal path that takes into account both sea 
and ground conditions, however it would be computationally exhaustive because of Step 
2, where separate visibility graphs are constructed for each shore point that is used as a 
terminating waypoint. To derive a truly optimal path, the ground would need to be 
represented by a high resolution grid, which would increase the amount of graphs that 
would need to be constructed and then searched with D* Lite. An option would be to 
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create a low resolution grid approximation of the ground, which would result in less 
graphs being constructed, but then the path would not be very optimal and would still 
take more time than if only a single graph were constructed.  
 
Algorithm 11 shows a less optimal, though much more computationally efficient 
approach to finding an effective path from a start point at sea to a goal point inland. It 
ignores ground traversibility difficulty when c < ∞ while the vehicle is still in water (see 
Figure 24). This is done because it is believed that since surf zone dynamics are so 
chaotic, any extra time it would take to optimize an amphibious path that takes into 
account ground conditions would be better spent coming up with a new plan that would 
adjust the vehicles heading to better travel in a new sea state. Furthermore, with 
Algorithm 11, when the vehicle beaches, a feasible path will exist to the goal waypoint, 
and Field D* would optimize the remainder of the path. 
 

Algorithm 11: Computationally Feasible Sea-Surface to Ground Path Plan 

Step 1 Treat the grid model of the ground as water where neighboring cells with 
infinite traversibility costs are treated as an obstacle (see Figure 24). 

Step 2 Use Algorithm  to find the heading of the optimal path from the present location 
to the goal. 

Step 3 Repeat Step 2 while the vehicle is in water. 
Step 4 When the vehicle is firmly on ground, use Field D* to find the optimal path to 

the goal. 
 

 
Figure 24: Illustration of Step 1 in Algorithm 11 

 

Ground to Sea-Surface 

Transitioning from ground to the sea poses less of a problem than the other way around 
because once the vehicle is in water, Algorithm  can be used to reach the goal waypoint. 
Since the sea conditions change so rapidly, they should not be taken into account when 
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deriving the optimal path from ground to sea. The geometric configuration of the 
obstacles, however, should be taken into account which leads to Algorithm . 

 

Algorithm 12: Computationally Feasible Ground to Sea-Surface Path Plan 

Step 1 Merge a grid representation of the sea, where obstacles represent neighboring 
cells with traversal costs of infinity and all other cells have a unit traversal cost, 
with the grid representation of land (see Figure 25). 

Step 2 Use Field D* to find the optimal path from the present location to the goal 
location at sea. 

Step 3 While the vehicle is on land, repeat Step 2. 
Step 4 When the vehicle is in water, use Algorithm  to find the optimal heading to 

reach the goal. 
 

 
Figure 25: Illustration of Step 1 in Algorithm  
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Conclusion 
Although AuAVs present a significant challenge in devising an optimized path-planning 
procedure, a number of options have been investigated and discussed and a potential 
algorithm for autonomous navigation has been identified and outlined: 
 

 Existing theorems and algorithms for optimal sea paths were used to develop an 
original algorithm for continuous path planning for sea-to-sea navigation 
(Algorithm ). The algorithm uses a simplified global path to derive an optimal 
heading the vehicle should take which has been shown to coincide with the 
heading of the actual optimal path (Dolinskaya & Smith, 2008b).  

 An existing algorithm for autonomous ground navigation, Field D*, that is 
implemented on Mars Exploration Rovers was investigated and selected as 
feasible for this project (Algorithm ).  

 An original algorithm was proposed for the separate transition cases: sea-to-
ground (Algorithm 11), and ground-to-sea (Algorithm ). For sea-to-ground, the 
land area of operation is to be treated as sea, where cells with infinite traversal 
costs are treated as obstacles, until the vehicle beaches, at which point ground 
navigation (Algorithm ) would be used to travel to the goal point. For ground-to-
sea, the water area of operation is to be treated as ground, where cells either have 
costs of infinity (for obstacles), or one (lowest difficulty if there are no obstacles), 
until the vehicle enters the sea, at which point sea navigation (Algorithm ) would 
be used to travel to the goal point. 

Functional Requirements for Implementation 

The proposed algorithms were developed as part of the design of an autonomous control 
system for DUKW-21. In order to successfully implement the navigation algorithms on 
DUKW-21 (or its current prototype – DUKW-ling), the assumed capabilities outlined 
below must also be developed, making them effective information requirements of the 
design. 
 

 The AuAV will have access to a grid model of the global environment where each 
cell has an associated traversibility cost. 

 The AuAV will have interoperability with other systems involved in the mission, 
which can provide updated information to the grid. 

 There will be a means of creating a local map in real-time that can be efficiently 
integrated with the global map to create one grid. 

 The amphibious vehicle will be able to use data it collects from onboard sensors 
to, in real-time, derive an approximate direction-dependent speed function that 
maps each heading angle to a maximum-attainable speed. 

Providing these are met (with appropriate complexity depending on the application 
platform), the algorithm could be successfully implemented in either system. 
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Recommendations for Future Research 
While the proposed algorithm finds an amphibious path that is feasible given 
environmental conditions, it does not factor in all of the vehicle operability constraints. In 
order to improve the accuracy of out path finding model, future development of this 
algorithm should consider turning constraints of the vehicle.  
 
One ongoing research effort involves optimizing paths constrained by the sharpest 
feasible turns (Dolinskaya, 2009). However, this research does not address the presence 
of obstacles in the vessel domain. Alternatively, one can integrate a penalty, as a function 
of turn angle, which a vessel accrues every time it has to make a turn. This cost would be 
integrated into the ULPAR for sea navigation or the local cell costs for ground 
navigation. This way, the algorithm, for the most part, does not change; instead, the 
problem space is modified (which would change the heuristic used). Optimal motion of 
rotating non-circular robots is an ongoing field of research; a place to get started are the 
sections on optimal motion of non-point robots and multiple criteria optimal paths in 
Mitchell’s survey (2000). 
 
Additional work that must be completed in order to progress the development of an 
autonomous DUKW-21 include: 
 

 Tests should be carried out on the remote-controlled DUKW-ling to better 
understand its dynamics in different sea states, as well as determine various 
constraints, such as maximum turning radius and the maximum slope gradient it is 
able to traverse. 

 Research on Simultaneous Localization and Mapping (SLAM) algorithms to 
determine which ones are appropriate for DUKW-21’s specifications.  

 A hardware survey must be done to decide which sensors would be able to 
provide the necessary information for DUKW-21 to derive a direction-dependent 
speed function, as well as model the local environment to guarantee that the 
SLAM algorithm will be successful. The hardware must also be able to facilitate 
interoperability with other systems that will eventually be a part of DUKW-21’s 
missions. 
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